25k^2+12=35k

Simple and best practice solution for 25k^2+12=35k equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 25k^2+12=35k equation:



25k^2+12=35k
We move all terms to the left:
25k^2+12-(35k)=0
a = 25; b = -35; c = +12;
Δ = b2-4ac
Δ = -352-4·25·12
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-35)-5}{2*25}=\frac{30}{50} =3/5 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-35)+5}{2*25}=\frac{40}{50} =4/5 $

See similar equations:

| b/6-6=-10 | | 4y=4y-4 | | X^2+1+x=1 | | 14/3x=56 | | -5m+1=5 | | 3n-37=47 | | 2^x^2+1x2^x=1 | | 2x-5=4x-20 | | 4x(x+14)(x-2)=0 | | 7x^2-15x-2=0 | | 32÷6=x | | -42=7+x/5 | | ((2x)^2)+(×^2)=180 | | (x+66)+(x-15)+x=180 | | 0=7(m+6) | | 6x+x^2+5=0 | | 1/4x-6=1 | | (2x)^2+(×^2)=180 | | 6xx^2+5=0 | | 4x^2-3x-64=0 | | 4x^2-3x+64=0 | | 5x+8=128 | | r÷7=12 | | x+1/x+2=8 | | -5(-3w+1)-3w=2(w-6)-5 | | 4(n-3)=3(4+2) | | -2(2-2t)=2(2t+2) | | 4+15=x+6 | | -6=-8+p | | -2x-18-33=-7 | | 2b+b+(2b+1)=16 | | X^2-3x+2=729 |

Equations solver categories